MODULE STRUCTURE OF CERTAIN INDUCED REPRESENTATIONS OF COMPACT LIE GROUPS

RY

E. JAMES FUNDERBURK

ABSTRACT. Let G be a compact connected Lie group and assume a choice of maximal torus and positive roots has been made. Given a dominant weight λ , the Borel-Weil Theorem shows how to construct a holomorphic line bundle on whose sections G acts so that the holomorphic sections provide a realization of the irreducible representation of G with highest weight λ . This paper studies the G-module structure of the space Γ of square integrable sections of the Borel-Weil line bundle. It is found that $\Gamma = \lim_{n \to \infty} \Gamma(n)$, where $\Gamma(n) \subset \Gamma(n+1) \subset \Gamma$ and $\Gamma(n)$ is isomorphic, as G-module, to

$$V(\lambda + n\lambda) \otimes V(n\lambda^*),$$

where $V(\mu)$ denotes the irreducible representation of highest weight μ , '+' is the Cartan semigroup operation, and '*' is the contragredient operation. Similar formulas hold for powers of the Borel-Weil line bundle.

1. Introduction. In the formulation of quantum mechanics proposed by J.-M. Souriau (see [14]) one is led, given a Lie group G, to the study of certain homogeneous Hermitian line bundles with connection whose bases have a symplectic structure determined as the curvature of the given connection. It is a natural question to ask the G-module structure of the sections of such homogeneous line bundles. For the case when G is a compact connected Lie group, this paper presents an answer to this question. In the solution presented one also obtains the G-module structure of square-integrable functions on both the total space and base of the associated principal bundle.

The answer obtained may be expressed as follows. Let T be a maximal torus in the compact connected Lie group G and Λ^+ the set of dominant weights for G with respect to a fixed choice of positive roots. Set theoretically we view Λ^+ as a certain set of linear functions on the Lie algebra of G, closed under addition and containing the zero linear functional. The Cartan theory of highest weights presents an identification of Λ^+ with \hat{G} , the set of, necessarily finite-dimensional and unitary, irreducible representations of G.

Let S denote the set of all functions from \hat{G} to the nonnegative integers, \mathbb{Z}^+ , and let \Re denote the set of unitary equivalence classes of completely

Received by the editors November 6, 1975.

AMS (MOS) subject classifications (1970). Primary 17B10, 43A85; Secondary 22E45, 17B20. Key words and phrases. Compact connected Lie group, highest weight, lowest weight, opposition involution, Cartan semigroup, tensor product, cyclic representation, Borel-Weil realization.

© American Mathematical Society 1977

continuous unitary representations of G. Then, there is a bijection ch: $\mathfrak{R} \to \mathbb{S}$, such that $\mathrm{ch}(\rho)(\lambda)$ is the multiplicity of λ as a subrepresentation of ρ , for ρ in \mathfrak{R} , λ in G. Thus the function $\mathrm{ch}(\rho)$ determines the G-module structure of ρ . We refer to $\mathrm{ch}(\rho)$ as the formal character of ρ .

The elements of \mathfrak{R} whose formal characters we will determine may be described as follows. Fix λ in \hat{G} and denote by λ^* in \hat{G} the representation contragredient to λ . Let K denote the isotropy group of λ^* in G with respect to the contragredient adjoint action of G. Let R and L denote the right and left regular representations of G in $L^2(G)$. Let Γ and Γ_k (for k in \mathbb{Z}) denote the elements of \mathbb{R} which are subrepresentations of L determined by the following requirements on f in $L^2(G)$:

$$f \in \Gamma$$
 iff $R(x)f = f$, $x \in K_0$,
 $f \in \Gamma_k$ iff $R(x)f = \chi(x)^k f$, $x \in K$.

Here $\chi: K \to S^1$ is the homomorphism determined by λ^* ($\chi(\exp X) = e^{\lambda^*(x)}$, for X in the Lie algebra of K), and K_0 is the kernel of χ . It is clear that $\Gamma_k \subset \Gamma$ for all k, and one may show $\Gamma = \bigoplus_{k \in \mathbb{Z}} \Gamma_k$, a direct sum in \Re . Γ_1 may be interpreted as the L^2 sections of a homogeneous Hermitian line bundle with connection $E \to M$ determined by λ^* , Γ_0 as $L^2(M)$, and Γ as $L^2(P)$, $S^1 \to P \to M$ being the associated principal bundle to $E \to M$.

We express $ch(\Gamma_k)$ as the limit of a certain bounded increasing sequence in S $(f < g \text{ in } S \text{ iff } f(\lambda) < g(\lambda) \text{ for all } \lambda \text{ in } G;$ a subset S of S is bounded iff $\{f(\lambda)|f \in S, \lambda \in G\}$ is a bounded set in \mathbb{Z}^+); obviously such a sequence has a unique point-wise defined limit in S. It is shown that

$$\left\{\operatorname{ch}(\mu + n\nu \otimes n\nu^*)\right\}_{n=0}^{\infty} \text{ and } \left\{\operatorname{ch}(n\nu \otimes \mu + n\nu^*)\right\}_{n=0}^{\infty}$$

are bounded increasing sequences in S, for μ , ν in Λ^+ . Then for k in \mathbb{Z}^+ , our main result states

$$\operatorname{ch}(\Gamma_k) = \lim_{n \to \infty} \operatorname{ch}(k\lambda + n\lambda \otimes n\lambda^*), \qquad \operatorname{ch}(\Gamma_{-k}) = \lim_{n \to \infty} \operatorname{ch}(n\lambda \otimes k\lambda^* + n\lambda^*).$$
In particular

$$\operatorname{ch}(\Gamma_1) = \lim_{n \to \infty} \operatorname{ch}((\lambda + n\lambda) \otimes n\lambda^*), \qquad \operatorname{ch}(\Gamma_0) = \lim_{n \to \infty} \operatorname{ch}(n\lambda \otimes n\lambda^*),$$

$$\operatorname{ch}(\Gamma) = \sum_{k=0}^{\infty} \lim_{n \to \infty} \left(\operatorname{ch}((k\lambda + n\lambda) \otimes n\lambda^*) + \operatorname{ch}(n\lambda \otimes (k\lambda^* + n\lambda^*)) \right).$$

The basic idea involved in establishing the above formulas may be referred to as the Borel-Weil realizations of elements of \hat{G} . For λ in $\hat{G} = \Lambda^+$, consider the systems of differential equations:

$$(R(X) - \lambda^*(X)) f = 0,$$

$$(L(X) - \lambda(X))f = 0,$$

for X a positive root vector or an element of the Lie algebra of T. Let \mathfrak{B}_{λ} denote the simultaneous solutions to (1); and \mathfrak{B}_{λ}^0 the simultaneous solutions to (1) and (2). Then, the subrepresentation of L in \mathfrak{B}_{λ} is a representative of λ in \hat{G} and \mathfrak{B}_{λ} is the highest weight space; we take this statement to be the Borel-Weil Theorem, and refer to B_{λ} as the Borel-Weil realization of λ . One has the relations $B_{\lambda+\nu}=B_{\lambda}B_{\nu}$ (equality of sets, $B_{\lambda}B_{\nu}$ is the complex span of point-wise defined products fg with f in B_{ν} , g in B_{ν}). \overline{B}_{ν} is isomorphic to \overline{B}_{ν} . $(\overline{B}_{\nu}$ is the set of \overline{f} with f in B_{ν}) and the multiplication map $B_{\lambda}\otimes B_{\nu}\to B_{\lambda}\overline{B}_{\nu}$ a (nonunitary) G-module equivalence; thus $B_{\lambda}\overline{B}_{\nu}$ as a subrepresentation of L is isomorphic to the tensor product $\lambda \otimes \nu$.

Borel-Weil realizations are related to the original question by using the Stone-Weierstrass Theorem to show $\sum_{p,q\in\mathbb{Z}^+} \mathfrak{B}_{p\lambda} \overline{\mathfrak{B}}_{q\lambda}$ is dense in $\Gamma = L^2(P)$.

For certain special cases we determine $ch(\Gamma_1)$ explicitly by working out the tensor product limits of our general expression for $ch(\Gamma_1)$. There is a generally applicable theoretical formula for the Clebsch-Gordon series for the tensor product of two irreducible representations (Steinberg's formula). When λ is regular, multiplicity formulas, such as those of Kostant and of Freudenthal, are of practical use in computing $ch(\Gamma_k)$.

The author expresses his appreciation to Joel W. Robbin for his lectures on the Souriau-Kostant approach to quantum mechanics and representation theory of Lie groups; these lectures and ensuing conversations made it possible to consider the questions of this paper.

- 2. Compact connected Lie groups. Throughout this paper G denotes a compact connected Lie group, $\mathcal G$ its Lie algebra and $\mathcal G_{\mathbf C}$ the complexification of $\mathcal G$.
- 2.1. Background on completely continuous representations. C(G) ($C^{\infty}(G)$) denotes the complex vector space of continuous (smooth) functions on G. $L^2(G)$ denotes the Hilbert space of functions on G that are square-integrable with respect to the normalized bi-invariant Haar measure dx on G.

We denote by \Re (respectively, \hat{G}) the set of unitary equivalence classes of completely continuous (respectively, irreducible) unitary representations of G. L and R, the left-regular and right-regular representations of G in $L^2(G)$, are (equal) elements of \Re (see 2.6.2 and 2.8.2 of [17]).

If ρ is a unitary representation we may denote by V^{ρ} the Hilbert space in which ρ acts by unitary operators. For ρ in \hat{G} , V^{ρ} is a finite-dimensional vector space (see 2.6.3 of [17]) of dimension d_{ρ} .

For ρ in \hat{G} we assume that an orthonormal basis $\{v_i^{\rho}\}_{i=1,\ldots,d_{\rho}}$ has been chosen for V^{ρ} ; in (2.4) a certain choice of basis will be made. Define $\rho_{ij} \in C(G)$ by $\rho_{ij}(a) = \{\rho(a)v_j^{\rho}, v_i^{\rho}\}, a \in G, 1 \leq i,j \leq d_{\rho}$. The Peter-Weyl Theorem [5, p. 203] asserts the density in $L^2(G)$ of $\{\rho_{ij}|\rho\in G, 1\leq i,j\leq d_{\rho}\}$. Defining $E^{i,j,\rho}$ in End(V^{ρ}) (the set of linear maps from V^{ρ} to V^{ρ}) by

$$E^{i,j,\rho}v_k^{\rho} = \delta_{ik}v_i^{\rho}, \qquad 1 \leq i,j,k \leq d_0,$$

one has $\rho(a) = \sum_{i,j} \rho_{ij}(a) E^{i,j,\rho}, a \in G$.

Declaring $\{d_{\rho}^{-1/2} \hat{E}^{ij,\rho}: 1 \leq i, j \leq d_{\rho}\}$ to be an orthonormal set imposes a Hilbert space structure on $\operatorname{End}(V^{\rho})$. One may form the Hilbert space direct sum \mathcal{E} of the $\operatorname{End}(V^{\rho})$ for ρ in \hat{G} . For A in \mathcal{E} and ρ in \hat{G} , A_{ρ} denotes the component of A in $\operatorname{End}(V^{\rho})$.

The Fourier transform $\mathfrak{F}\colon L^2(G)\to\mathfrak{S}$ and the inverse Fourier transform $\mathfrak{F}^*\colon \mathfrak{S}\to L^2(G)$ are mutually inverse isometries such that for f in C(G), ρ in \hat{G} , A in $\operatorname{End}(V^\rho)$, γ in G,

$$\mathfrak{F}(f)_{\rho} = \int_{G} f(x)\rho(x) \ dx, \qquad \mathfrak{F}^{*}(A)(y) = d_{\rho} \operatorname{tr}(A\rho(y^{-1})).$$

If ρ is in \Re and λ is in \hat{G} , then the finite dimension of the space of all operators that intertwine λ and ρ we denote by $\mathrm{ch}(\rho)(\lambda)$. Thus, ch sets up a one-to-one correspondence between \Re and the set \Im of functions from \hat{G} to \mathbf{Z}^+ . We call $\mathrm{ch}(\rho)$ the formal character of the completely continuous representation ρ .

2.2. Cartan semigroup. Let ρ be a unitary representation of G. If v is a smooth vector we set

$$\rho(X)v = \lim_{t \to 0} (\rho(\exp(tX))v - v)/t, \quad X \in \mathcal{G}.$$

From now on in §2 all representations are assumed to be finite-dimensional unitary. For a representation ρ of G we denote also by ρ the associated Lie algebra homomorphism $\mathcal{G} \to \operatorname{End}(V^{\rho})$ or its complex linear extension $\mathcal{G}_{\mathbf{C}} \to \operatorname{End}(V^{\rho})$.

We assume fixed a maximal torus T of G with Lie algebra \mathfrak{T} . \mathfrak{T} denotes the complexification of the Lie algebra of the center of G, $\mathfrak{L} = [\mathfrak{S}_{\mathbf{C}}, \mathfrak{S}_{\mathbf{C}}]$, $\mathfrak{K} = \mathfrak{T}_{\mathbf{C}} \cap \mathfrak{L}$.

The complexified adjoint representation of G in $\mathcal{G}_{\mathbf{C}}$ is denoted by ad, its contragredient by ad*. We assume fixed a positive definite inner product on \mathcal{G} extended to Hermitian inner product on $\mathcal{G}_{\mathbf{C}}$ and dualized to one on $\mathcal{G}_{\mathbf{C}}^{\star}$ which (see 5.6.1 of [17]) is $\mathrm{ad}(G)$ invariant, is equal to the negative Killing form on $\mathcal{C} \cap \mathcal{G}$, and renders \mathcal{C} and \mathcal{Z} perpendicular. By means of the splittings $\mathcal{G}_{\mathbf{C}} = \mathcal{T}_{\mathbf{C}} \oplus \mathcal{T}_{\mathbf{C}}^{\star}$, $\mathcal{T}_{\mathbf{C}} = \mathcal{H} \oplus \mathcal{Z}$, we consider $\mathcal{T}_{\mathbf{C}}^{\star}$ and \mathcal{H}^{\star} as subspaces of $\mathcal{G}_{\mathbf{C}}^{\star}$.

If ρ is a representation of G and λ is in \mathfrak{T}_{C}^{*} , set $V_{\lambda}^{\rho} = \{v \in V^{\rho} | \rho(\exp(H))v\}$ = $e^{\lambda(H)}v$ if $H \in \mathfrak{T}\}$. If $V_{\lambda}^{\rho} \neq (0)$ we say that λ is a weight of ρ , V_{λ}^{ρ} is the λ weight space of ρ and nonzero elements of V_{λ}^{ρ} are weight vectors of ρ of weight λ ; $\Lambda(\rho)$ is the set of weights of ρ .

The root system Φ of G with respect to T may be defined as $\Lambda(ad) - \{0\}$. We assume a fixed set Φ^+ of positive roots has been chosen, and set

 $\Phi^- = -\Phi^+$ and denote by \mathfrak{N}^+ (\mathfrak{N}^-) the vector space sum of the positive (negative) root spaces; \mathcal{G}_{α} denotes the α weight space of ad, for $\alpha \in \Phi$.

Let Λ^+ denote the set of dominant weights of G (with respect to T, Φ^+). As a subset of the additive vector space $\mathfrak{T}_{\mathbf{C}}^*$, Λ^+ is an abelian semigroup with identity. Since identified with Λ^+ v ia the correspondence of ρ in \hat{G} with its highest weight λ_{ρ} in Λ^+ , \hat{G} is an abelian semigroup, called the Cartan semigroup.

2.3. Weyl group; opposition involution. The Weyl group W of G (with respect to T) may be defined as N(T)/T, where $N(T) = \{a \in G | nTn^{-1} = T\}$, or as the subgroup of linear automorphisms of $\mathfrak{T}_{\mathbf{C}}^*$ generated by the reflections $\{\sigma_{\alpha} | \alpha \in \Phi\}$, where

$$\sigma_{\alpha}(\lambda) = \lambda - 2(\{\lambda, \alpha\} \alpha / \{\alpha, \alpha\}),$$

for α , λ in $\mathfrak{T}_{\mathbf{C}}^*$. If $\mathrm{ad}^*(n)$, for n in N(T), induces the automorphism w of $\mathfrak{T}_{\mathbf{C}}^*$, we may write w = nT.

There is a unique element w_0 in W with $w_0\Phi^+ = \Phi^-$; since w_0^2 is the identity, w_0 is called the opposition involution (with respect to T, Φ^+). We assume n_0 in N(T) chosen with $w_0 = n_0 T$.

2.4. Lowest weight. For each ρ in \hat{G} there is unique λ_{ρ}^- in $-\Lambda^+$ so that $\lambda_{\rho}^- \in \Lambda(\rho)$ but, for $\alpha \in \Phi^-$, $\lambda_{\rho}^- + \alpha \not\in \Lambda(\rho)$; λ_{ρ}^- is called the lowest weight of ρ and any nonzero element of the one-dimensional space $V_{\lambda_{\rho}^-}^{\rho}$ is called a lowest weight vector.

PROPOSITION (2.4.1). For ρ in \hat{G} , $w_0(\lambda_{\rho}) = \lambda_{\rho}^- = -\lambda_{\rho^*}$ and $\rho(n_0^{\epsilon})V_{\lambda_{\rho}}^{\rho} = V_{\lambda_{\rho}}^{\rho}$, for $\epsilon = \pm 1$. Here ρ^* is the representation of G in $(V^{\rho})^*$ contragredient to ρ .

PROOF. Choose α in Φ^+ , $X_{-\alpha}$ in $\mathcal{G}_{-\alpha}$, and v in $V^{\rho}_{\lambda_{\rho}}$. As $\operatorname{ad}(n_0)\mathcal{G}_{-\alpha} \subset \mathcal{G}_{w_0(-\alpha)} \subset n^+$, one has $\rho(X_{-\alpha})\rho(n_0^{-1})v = \rho(n_0^{-1})\rho(\operatorname{ad}(n_0)X_{-\alpha})v = 0$. It follows that $V^{\rho}_{\lambda_{\rho}} = \rho(n_0^{-1})V^{\rho}_{\lambda_{\rho}} = V^{\rho}_{w_0(\lambda_{\rho})}$, so $\lambda_{\rho}^- = w_0(\lambda_{\rho})$. From $\Lambda(\rho^*) = -\Lambda(\rho)$ we see that $-\lambda_{\rho^*} - \alpha$ is not in $\Lambda(\rho)$ for α in Φ^+ and that $-\lambda_{\rho^*}$ is in $\Lambda(\rho)$. By the uniqueness of λ_{ρ}^- , $-\lambda_{\rho^*} = \lambda_{\rho}^-$. Q.E.D.

From now on in this paper we assume the Cartan identification of \hat{G} with Λ^+ . Frequently elements of \hat{G} are denoted by λ in Λ^+ ; sometimes $\rho_{\lambda}(a)$ may be written in place of $\lambda(a)$, for a in G.

Suppose λ in $\Lambda^+ = \hat{G}$ is chosen. We choose once and for all, an orthonormal basis $\{v_i^{\lambda}\}_{i=1,\ldots,d(\lambda)}$ of V^{λ} consisting of weight vectors and enumerated in such a way that v_1^{λ} is of weight λ and $v_{d(\lambda)}^{\lambda}$ is of weight $-\lambda^*$, where λ^* is the element of Λ^+ corresponding to the contragredient of λ . We denote by $\{\phi_i^{\lambda}\}_{i=1,\ldots,d(\lambda)}$ the basis of V^{λ^*} dual to $\{v_i^{\lambda}\}_{i=1,\ldots,d(\lambda)}$; thus $\phi_{d(\lambda)}$ is of weight λ^* and ϕ_1^{λ} of weight $-\lambda$. We may further assume that $v_{d(\lambda)}^{\lambda} = \lambda(n_0)v_1^{\lambda}$ and define $\zeta_0 \in S^1$ by $\lambda(n_0^{-1})v_1^{\lambda} = \zeta_0 v_{d(\lambda)}^{\lambda}$.

For later use we introduce the notations f_i^{λ} for $\bar{\lambda}_{id(\lambda)}$ and \mathfrak{B}_{λ} for the complex linear span of the independent set $\{f_1^{\lambda}, \ldots, f_{d(\lambda)}^{\lambda}\}$. One may readily

verify the formulas $f_1^{\lambda}(n_0^{-1}) = 1$; $\lambda(a)v_{d(\lambda)}^{\lambda} = \sum \bar{f}_i^{\lambda}(a)v_i^{\lambda}$; $\lambda^*(a)\phi_{d(\lambda)}^{\lambda} = \sum f_i^{\lambda}(a)\phi_i^{\lambda}$; $\sum f_i^{\lambda}\bar{f}_i^{\lambda} = 1$ (the summations in these last three formulas are for $i = 1, \ldots, d(\lambda)$).

For λ in \hat{G} we identify $\operatorname{End}(V^{\lambda})$ and $V^{\lambda} \otimes V^{\lambda^{*}}$ by corresponding $v \otimes \phi$ to the endomorphism sending v' to $\phi(v')v$; in particular $v_{i}^{\lambda} \otimes \phi_{j}^{\lambda}$ corresponds to $E^{ij,\lambda}$. Further equating $\operatorname{End}(V^{\lambda})$ with $L^{2}(G)_{\lambda} = \mathfrak{F}^{*}(\operatorname{End}(V^{\lambda}))$ via the Fourier transform \mathfrak{F} , we see that L(a) corresponds to $\lambda(a) \otimes 1$ and R(a) to $1 \otimes \lambda^{*}(a)$, for a in G.

2.5. Cyclic representations. A representation ρ of G is called cyclic if there is v in V^{ρ} so that V^{ρ} equals the linear span of the orbit $\{\rho(a)v|a\in G\}$; a vector whose orbit spans V^{ρ} is called a cyclic vector.

PROPOSITION (2.5.1). (a) ρ is cyclic if ρ is in \hat{G} . (b) If ρ_1 and ρ_2 are in \hat{G} , then $\rho_1 \otimes \rho_2$ is cyclic; in fact $v_1 \otimes v_2$ is a cyclic vector if v_1 is a highest weight vector for ρ_1 and v_2 a lowest weight vector for ρ_2 , and $v_1 \neq 0$, $v_2 \neq 0$.

PROOF. (a) The linear span of an orbit is an invariant subspace. Thus any nonzero vector in V^{ρ} is a cyclic vector for ρ in \hat{G} .

(b) Let v_1 , v_2 be as enunciated, set $v = v_1 \otimes v_2$, and denote by V the span of the orbit of v under $\rho_1 \otimes \rho_2$. We must show $V = V^{\rho_1} \otimes V^{\rho_2}$. Choose $u_i \in V^{\rho_i}$, i = 1, 2. It suffices to show $u_1 \otimes u_2 \in v$. Now, u_1 is a linear combination of elements of the form v_1 , Av_1 , where $A = \rho_1(X_1) \dots \rho_1(X_r)v_1$ $(\alpha(i) \in \Phi^+, X_i \in \mathcal{G}_{-\alpha(i)})$. But

$$(\rho_1 \otimes \rho_2)(X_{-\alpha})(w_1 \otimes v_2) = (\rho_1(X_{-\alpha})w_1) \otimes v_2 + w_1 \otimes \rho(X_{-\alpha})v_2$$
$$= (\rho_1(X_{-\alpha})w_1) \otimes v_2$$

for $\alpha \in \Phi^+$, $X_{-\alpha} \in \mathcal{G}_{-\alpha}$, $w_1 \in V^{\rho_1}$. As $(\rho_1 \otimes \rho_2)(\mathcal{G}_C)V \subset V$, one concludes $w_1 \otimes v_2 \in V$ for any $w_1 \in V^{\rho_1}$. Now by (a) there are c_1, \ldots, c_r in C, a_1, \ldots, a_r in G with $u_2 = \sum_i c_i \rho_2(a_i) v_2$; hence

$$u_1 \otimes u_2 = \sum_i c_i u_1 \otimes \rho_2(a_i) v_2$$

=
$$\sum_i c_i (\rho_1 \otimes \rho_2)(a_i) (\rho_1(a_i^{-1}) u_1 \otimes v_2).$$

With the previous remark, one concludes that $u_1 \otimes u_2 \in V$. Q.E.D.

- 3. The Borel-Weil Theorem and its consequences. We retain the notations of the preceding sections.
 - 3.1. Borel-Weil Theorem. For μ in \mathfrak{T}_{c}^{*} set

$$\mathfrak{N}(\mu) = \left\{ f \in C^{\infty}(G) | (R(X) + \mu(X)) f = 0 \text{ if } X \in \mathfrak{T}_{\mathbf{C}} + \mathfrak{N}^{+} \right\},$$

$$\mathfrak{N}'(\mu) = \left\{ f \in C^{\infty}(G) | (L(X) + \mu(X)) f = 0 \text{ if } X \in \mathfrak{T}_{\mathbf{C}} + \mathfrak{N}^{+} \right\}.$$

Let G_{μ} denote the isotropy subgroup of μ in G under the contragredient adjoint action, and let \mathcal{G}_{μ} denote the Lie algebra of G_{μ} .

The implication of the usual Borel-Weil Theorem (see [12]) from that stated below is detailed in [7].

THEOREM (3.1.1) (BOREL-WEIL THEOREM). (a) $\mathfrak{M}(\mu) = 0$ unless $-\mu$ is in Λ^+ .

- (b) If $-\mu = \lambda^*$ with λ in Λ^+ , then $\mathfrak{M}(\mu) \subset L^2(G)_{\lambda}$, $L(G)\mathfrak{M}(\mu) \subset \mathfrak{M}(\mu)$, and the subrepresentation of L in $\mathfrak{M}(\mu)$ is equivalent to λ .
- (c) For μ , μ' in $\mathfrak{T}_{\mathbf{C}}^*$, $\mathfrak{M}(\mu) \cap \mathfrak{M}'(\mu') \neq 0$ if and only if there is λ in Λ^+ with $-\mu = \lambda^*$, $-\mu' = \lambda$. If $\mathfrak{M}(\mu) \cap \mathfrak{M}'(\mu')$ is not zero, then its dimension is 1. (d) $\mathfrak{M}(\mu) = \{ f \in C^{\infty}(G) | (R(X) + \mu(X)) f = 0 \text{ if } X \in (\mathfrak{S}_{\mu})_{\mathbf{C}} + \mathfrak{N}^+ \}.$

PROOF. We assert that if f is in $\mathfrak{M}(\mu)$ then $f_{\gamma} = \mathfrak{F}^*((\mathfrak{F}(f)_{\gamma}))$ is in $\mathfrak{M}(\mu)$ for γ in \hat{G} . Writing $g_{\gamma} = f - f_{\gamma}$ we have $f = f_{\gamma} + g_{\gamma}, f_{\gamma} \in L^2(G)_{\gamma}, g_{\gamma} \in L^2(G)_{\gamma}^{\perp}$. Now as R is unitary and preserves $L^2(G)_{\gamma}$, it also preserves $L^2(G)_{\gamma}^{\perp}$; hence the same is true of $R(X) + \mu(X)$ for any X in $\mathfrak{G}_{\mathbb{C}}$. Thus,

$$(R(X) + \mu(X))f_{v} + (R(X) + \mu(X))g_{v}$$

is the decomposition of $(R(X) + \mu(X))f$ into orthogonal components in $L^2(G)_{\gamma}$ and $L^2(G)_{\gamma}^{\perp}$. In particular, if $(R(X) + \mu(X))f = 0$, then

$$(R(X) + \mu(X))f_{\gamma} = 0 = (R(X) + \mu(X))G_{\gamma},$$

from which the assertion follows.

We now show that for f in $\mathfrak{M}(\mu)$ and λ in Λ^+ , f = 0 unless $-\mu = \lambda^*$. In the identification of $L^2(G)_{\lambda}$ with $V^{\lambda} \otimes V^{\lambda^*}$, $\mathfrak{N}(\mu) \cap L^2(G)_{\lambda}$ corresponds to $V^{\lambda} \otimes \{ \phi \in V^{\lambda^{\bullet}} | (\rho_{\lambda^{\bullet}}(X) + \mu(X)) \phi = 0 \text{ if } X \in \mathfrak{I}_{\mathbb{C}} + \mathfrak{N}^{+} \}.$ But this latter set is zero unless $-\mu = \lambda^*$, by the uniqueness of highest weight of V^{λ^*} . This establishes (a). Now if $-\mu = \lambda^*$ with λ in Λ^+ , then we have that $\mathfrak{M}(\mu) \subset$ $L^2(G)_{\lambda}$, $L(G)\mathfrak{M}(\mu) \subset \mathfrak{M}(\mu)$ (as L and R commute), and the subrepresentation of L in $\mathfrak{N}(\mu)$ is isomorphic to that of $\lambda \otimes 1$ in $V^{\lambda} \otimes V_{\lambda^*}^{\lambda^*}$. As dim $V_{\lambda^*}^{\lambda^*}$ = 1, the representation $\lambda \otimes 1$ of G in $V^{\lambda} \otimes V_{\lambda^*}^{\lambda^*}$ is equivalent to that of λ . This establishes (b). Now if μ and μ' are in $\mathfrak{T}_{\mathbf{C}}^*$, we know by (a) that $\mathfrak{M}(\mu) \cap \mathfrak{M}'(\mu') = 0$ unless $\mu = -\lambda^*$ for some λ in Λ^+ . If $\mu = -\lambda^*$, with λ in Λ^+ , then, in the identification with $V^{\lambda} \otimes V^{\lambda^*}$, $\mathfrak{M}(\mu) \cap \mathfrak{M}'(\mu') = \{v \in \mathcal{N}^*\}$ $V^{\lambda}|(\rho_{\lambda}(X) + \mu'(X))v = 0$ if $X \in \mathcal{T}_{\mathbf{C}} + \mathcal{T}^{+} \otimes V^{\lambda^{*}}_{\lambda^{*}}$. The first factor is 0 unless $\mu' = -\lambda$, by the uniqueness of highest weight in V^{λ} . If $-\mu' = \lambda$, then $\mathfrak{M}(\mu) \cap \mathfrak{M}'(\mu')$ corresponds to $V_{\lambda}^{\lambda} \otimes V_{\lambda^{*}}^{\lambda^{*}}$, which is a one-dimensional space. This proves (c). To prove (d), we need only show that $\rho_{\lambda^*}(X)V_{\lambda^*}^{\lambda^*} \subset$ $V_{\lambda^*}^{\lambda^*}$ if X is in $(\mathcal{G}_{\mu})_{\mathbf{C}}$ where $-\mu = \lambda^*$. But $(\mathcal{G}_{\mu})_{\mathbf{C}} = \mathfrak{T}_{\mathbf{C}} + \sum_{\alpha \in \Phi} \mathcal{G}_{\alpha}$, where $\Phi' = \{\alpha \in \Phi | \{\alpha, \mu\} = 0\}$. Now if $\alpha \in \Phi' \cap \Phi^+$, then $V_{\lambda^* + \alpha}^{\lambda^*} = (0)$, as λ^* is the highest weight. But then $V_{\lambda^* - \alpha}^{\lambda^*} = V_{\sigma_{\alpha}(\lambda^* + \alpha)}^{\lambda^*} = \rho_{\lambda^*}(n_{\alpha})V_{\lambda^* + \alpha}^{\lambda^*} = (0)$, where $\sigma_{\alpha} = n_{\alpha} T$. Thus the highest weight space of λ^* is invariant under $(\mathcal{G}_{\mu})_{\mathbf{C}}$. Q.E.D.

In view of the Borel-Weil Theorem, we introduce the notation $\mathfrak{B}_{\lambda} = \mathfrak{M}(-\lambda^*)$, $\mathfrak{B}_{\lambda}^0 = \mathfrak{M}(-\lambda^*) \cap \mathfrak{M}'(-\lambda)$, for λ in Λ^+ . The subrepresentation of L in \mathfrak{B}_{λ} is equivalent to λ , and \mathfrak{B}_{λ}^0 is a one-dimensional subspace of \mathfrak{B}_{λ} , in fact being the λ weight-space of L in \mathfrak{B}_{λ} . We call \mathfrak{B}_{λ} the Borel-Weil realization of λ in $\hat{G} = \Lambda^+$. Note that \mathfrak{B}_{λ} as here defined agrees with the notation introduced in 2.4 and that f_1^{λ} is a spanning vector of \mathfrak{B}_{λ}^0 . We call $\bigcup_{\lambda \in \Lambda^+} \mathfrak{B}_{\lambda}^0$ the set of Borel-Weil functions.

THEOREM (3.1.2). $\mathfrak{B}_{\lambda}^{0}\mathfrak{B}_{\lambda'}^{0} = \mathfrak{B}_{\lambda+\lambda'}^{0}$, for λ, λ' in Λ^{+} .

PROOF. The Leibnitz rule for differentiating a product of functions shows immediately that $\mathfrak{B}^0_{\lambda}\mathfrak{B}^0_{\lambda'}\subset\mathfrak{B}^0_{\lambda+\lambda'}$. Now, $(f_1^{\lambda}\cdot f_1^{\lambda'})(n_0^{-1})=1$ (see 2.4). Thus $\mathfrak{B}^0_{\lambda}\mathfrak{B}^0_{\lambda'}\neq 0$ and as $\mathfrak{B}^0_{\lambda+\lambda'}$ is one-dimensional, the result holds. Q.E.D.

Explicit formulas for Borel-Weil functions of the four classical series of compact simple Lie groups are detailed in [7].

3.2. Cartan product and tensor product. The results 3.2.1 and 3.2.4 below show how Borel-Weil realizations interact under point-wise multiplication and complex conjugation to yield realizations of the Cartan semigroup and tensor product operations.

Theorem (3.2.1).
$$\mathfrak{B}_{\lambda}\mathfrak{B}_{\nu}=\mathfrak{B}_{\lambda+\nu}$$
.

PROOF. The Leibnitz rule and the definition of the \mathfrak{B}_{λ} 's shows at once that $\mathfrak{B}_{\lambda}\mathfrak{B}_{\nu}\subseteq\mathfrak{B}_{\lambda+\nu}$. $\mathfrak{B}_{\lambda}\mathfrak{B}_{\nu}$ is invariant under L and $\mathfrak{B}_{\lambda+\nu}$ is irreducible under L. Thus either $\mathfrak{B}_{\lambda}\mathfrak{B}_{\nu}=(0)$ or $\mathfrak{B}_{\lambda}\mathfrak{B}_{\nu}=\mathfrak{B}_{\lambda+\nu}$. But $0\neq\mathfrak{B}_{\lambda+\nu}^{0}\subseteq\mathfrak{B}_{\lambda}\mathfrak{B}_{\nu}$, by (3.1.2). Thus, $\mathfrak{B}_{\lambda}\mathfrak{B}_{\nu}=\mathfrak{B}_{\lambda+\nu}$. Q.E.D.

The next two results are preparatory to 3.2.4, but of interest in their own right.

THEOREM (3.2.2). The multiplication map $M: \mathfrak{B}_{\lambda} \otimes \overline{\mathfrak{B}}_{\nu} \to \mathfrak{B}_{\lambda} \overline{\mathfrak{B}}_{\nu}$ is a bijection, for λ, ν in Λ^+ .

PROOF. M is clearly C-linear and surjective. To show M is injective, choose T with M(T)=0. We may write $T=\sum_{i,j}T_{ij}f_i^{\lambda}\otimes \bar{f}_j^{\nu}$, where the T_{ij} are certain numbers. Now set $\tau=\sum_{i,j}T_{ij}\tau_{ij}$, where $\{\tau_{ij}\}_{i,j}$ is the basis of $(V^{\lambda^{\bullet}}\otimes V^{\nu})^{*}$ dual to the basis $\{\phi_i^{\lambda}\otimes v_j^{\nu}\}_{i,j}$ of $V^{\lambda^{\bullet}}\otimes V^{\nu}$. The relations of 2.4 may be used to see that, for a in G,

$$\tau\big((\lambda^*\otimes\nu)(a)\big(\phi_{d(\lambda)}^\lambda\otimes v_{d(\nu)}^\nu\big)\big)=M(T)(a).$$

Since M(T) = 0, we conclude, with the assistance of 2.5.1(b), that $\tau = 0$. But then $T_{ij=0}$ for all i, j which shows T = 0. Q.E.D.

PROPOSITION (3.2.3). For λ in Λ^+ , $R(\underline{n_0}) \mathfrak{B}_{\lambda^*} = \overline{\mathfrak{B}}_{\lambda}$. Thus $R(\underline{n_0})$ provides a G-module equivalence between \mathfrak{B}_{λ^*} and $\overline{\mathfrak{B}}_{\lambda}$.

PROOF. Choose \underline{f} in \mathfrak{B}_{λ^*} and X in $\mathfrak{T}_{\mathbf{C}} + \mathfrak{N}^+$. Note that $\mathrm{Ad}(n_0^{-1})X$ is also in $\underline{\mathfrak{T}_{\mathbf{C}} + \mathfrak{N}^+}$ (here $\overline{X} = X_1 - iX_2$ if $X = X_1 + iX_2$, with $X_1, X_2 \in \mathcal{G}$) and that $\lambda(\overline{X}) = -\lambda(X)$ (as $\lambda(\mathcal{G}) \subset i\mathbf{R}$). Then,

$$R(X)R(n_0)\bar{f} = R(n_0)\overline{R(\overline{\mathrm{Ad}(n_0^{-1})X})}f = R(n_0)\overline{\lambda^*(\overline{\mathrm{Ad}(n_0^{-1})}X)}f$$
$$= \overline{(w_0\lambda^*)(\overline{X})}R(n_0)\bar{f} = -\overline{\lambda(\overline{X})}R(n_0)\bar{f} = \lambda(X)R(n_0)\bar{f}.$$

Thus, $R(n_0)\overline{f}$ is in \mathfrak{B}_{λ} , so $R(n_0)f$ is in $\overline{\mathfrak{B}}_{\lambda}$. Q.E.D.

COROLLARY (3.2.4). The map $f \otimes g \to f$. $R(n_0)g$ yields an isomorphism of G-modules between $\mathfrak{B}_{\lambda} \otimes \mathfrak{B}_{\nu}$ and $\mathfrak{B}_{\lambda} \overline{\mathfrak{B}}_{\nu^*}$ for any λ , ν in Λ^+ .

Of course, this isomorphism is nonunitary, in general; but still $ch(\lambda \otimes \nu) = ch(\mathfrak{B}_{\lambda} \overline{\mathfrak{B}}_{\nu^{\bullet}})$.

- 4. G-module structure of certain infinite-dimensional representations. Throughout §4, λ in Λ^+ is fixed and for convenience usually assumed nonzero.
- 4.1. The Hopf bundle for λ . Set $K = G_{\lambda^*} = \{a \in G | \operatorname{ad}^*(a)\lambda^* = \lambda^*\}$, M = G/K, \mathcal{K} the Lie algebra of K. K is a compact connected subgroup of G (see 6.6.2 of [16]).

PROPOSITION (4.1.1); There is a unique one-dimensional unitary representation $\chi: K \to S^1$ so that $\chi(\exp X) = e^{\lambda^{\bullet}(X)}$ for $X \in \mathcal{K}$.

PROOF. Since K is compact connected, the given formula ensures the uniqueness of χ . Since $\lambda^*(\S) \subset 2\pi i \mathbb{Z}$ and T is abelian, there does exist a character χ on T so that $\chi(\exp H) = e^{\lambda^{\bullet}(H)}$ for H in \Im . If $aTa^{-1} = T$ for a in K, then the element a represents an element of the Weyl group W_K of T in K; but W_K is generated by the reflections σ_{α} , where α is in Φ with $\mathcal{G}_{\alpha} \subset \mathcal{K}_{\mathbb{C}}$, and $\sigma_{\alpha}\lambda^* = \lambda^*$ for such α ; therefore $\chi(ata^{-1}) = \chi(t)$. Thus, there is a unique continuous class function χ on K extending χ on T (see 4.32 of [1]). It is immediate that $\chi(\exp X) = e^{\lambda^{\bullet}(X)}$ for X in \mathcal{K} , and it remains to see that χ is a group homomorphism. For this we write $\mathcal{K} = \mathcal{Z}(\mathcal{K}) \oplus [\mathcal{K}, \mathcal{K}]$ and note that $\lambda^*([\mathfrak{K},\mathfrak{K}])=0$, exp $\mathfrak{Z}(\mathfrak{K})\subset Z(K)$, and the connected Lie subgroup with Lie algebra [\mathfrak{K} , \mathfrak{K}] is compact connected. Choose (see [15, p. 234]) a, b in K, X, Y in \Re with exp X = a, exp Y = b, and write $X = X_1 + X_2$, $Y = Y_1 + A_2$ Y_2 according to the preceding decomposition of \Re , and choose Z_2 in $[\Re, \Re]$ with $\exp X_2 \exp Y_2 = \exp Z_2$. Then one sees that $ab = \exp(X_1 + Y_1 + Z_2)$, from which it follows that $\chi(ab) = \chi(a)\chi(b)$. Thus χ is a continuous homomorphism from K to S^1 . It follows that χ is also smooth. Q.E.D.

Set $K_0 = \ker \chi$; K_0 is a closed normal subgroup of K, and a closed subgroup of G. If $\lambda^* = 0$, then $K_0 = K = G$. Since $\lambda^* \neq 0$, the induced homomorphism $\tilde{\chi}$: $K/K_0 \rightarrow S^1$ is a Lie group isomorphism, by means of which we identify K/K_0 and S^1 . If K = G, then most of our theory is, while valid, trivial; as examples $\lambda^* = w_1 + \cdots + w_n$, G = U(n), $\chi = \det$; and $\chi = \lambda^*$ if G is abelian.

Set $P = G/K_0$ and let $\pi: P \to M$ send aK_0 to aK. Using χ , we may define $P \times S^1 \to P$ by $(aK_0, \zeta) \to (ax)K_0$, where $x \in K$ is chosen so that $\chi(x) = \zeta$. Then π is the projection for a principal S^1 bundle, which we refer to as the Hopf bundle for λ . We show first how to describe this bundle in terms of the element λ^* of \hat{G} .

PROPOSITION (4.1.2). The map from G to $V^{\lambda^{\bullet}}$ sending a to $\lambda^{*}(a)\phi_{d_{\lambda}}^{\lambda}$ determines an S^{1} -bundle equivalence of π with $P_{0} \rightarrow^{\pi_{0}} M_{0}$, where P_{0} is the orbit of $\phi_{d_{\lambda}}^{\lambda}$ in $V^{\lambda^{\bullet}}$, M_{0} is the orbit of $V_{\lambda^{\bullet}}^{\lambda^{\bullet}}$ in the projective representation determined by λ^{*} , and π_{0} is the restriction to P_{0} of the natural projection. The S^{1} action on P_{0} is induced by scalar multiplication in $V^{\lambda^{\bullet}}$.

PROOF. Several steps are required in the proof. Abbreviate $\phi_{d_{\lambda}}^{\lambda}$ by ϕ , $V^{\lambda^{\bullet}}$ by V.

Step 1.
$$K = \{a \in G | \lambda^*(a) V_{\lambda^*} = V_{\lambda^*} \}.$$

PROOF OF STEP 1. Set $K' = \{a \in G | \lambda^*(a) V_{\lambda^*} = V_{\lambda^*}\}$, \Re' the Lie algebra of K'. There is χ' in \hat{K}' , defined by $\lambda^*(a)\phi = \chi'(a)\phi$, $a \in K'$. Let $\theta \in \Re'_{\mathbb{C}}$ * be the infinitesimal representation for χ' .

The proof of 3.1.1(d) establishes that $\mathcal{K} \subset \mathcal{K}'$. Since K^* is connected, $\mathcal{K} \subset \mathcal{K}'$.

We claim θ is the restriction to $\mathcal{K}'_{\mathbf{C}}$ of λ^* in $\mathcal{G}^*_{\mathbf{C}}$. Clearly λ^* and θ agree on $\mathcal{T}_{\mathbf{C}}$. Now $\mathcal{K}'_{\mathbf{C}}$ is the sum of $\mathcal{T}_{\mathbf{C}}$ and the span of certain root vectors; this latter span being contained in the derived algebra $[\mathcal{K}'_{\mathbf{C}}, \mathcal{K}'_{\mathbf{C}}]$ of $\mathcal{K}'_{\mathbf{C}}$, θ vanishes on it, as does λ^* . Thus λ^* agrees with θ on $\mathcal{K}'_{\mathbf{C}}$.

Next we show $K' \subset K$. Fix X in \mathfrak{K}' , a in K'. Then

$$\lambda^*(\operatorname{ad}(a)X) \cdot \phi = \theta(\operatorname{ad}(a)X) \cdot \phi = \rho_{\lambda^*}(\operatorname{ad}(a)X) \cdot \phi$$

$$= \rho_{\lambda^*}(a)\rho_{\lambda^*}(X)\rho_{\lambda^*}(a^{-1}) \cdot \phi = \chi'(a)\theta(X)\chi'(a^{-1}) \cdot \phi$$

$$= \theta(X) \cdot \phi = \lambda^*(X) \cdot \phi.$$

Thus, $(\operatorname{ad}^*(a)\lambda^*)|_{\mathfrak{K}'} = \lambda^*|_{\mathfrak{K}}$. Since $\operatorname{ad}(a)\mathfrak{K}' \subset \mathfrak{K}'$, also $\operatorname{ad}(a)\mathfrak{K}'^{\perp} \subset \mathfrak{K}'^{\perp}$; and one has $(\operatorname{ad}^*(a)\lambda^*)|_{\mathfrak{K}^{\perp}} = 0 = \lambda^*|_{\mathfrak{K}^{\perp}}$. We conclude that $\operatorname{ad}^*(a)\lambda^* = \lambda^*$, i.e., a is in K. This concludes Step 1.

Step 2.
$$K_0 = \{a \in G | \lambda^*(a) \cdot \phi = \phi\}.$$

This is trivial when Step 1 is used.

Step 3. Conclusion of proof of proposition. We may, by Steps 1 and 2, define $\tilde{F}: P \to P_0$ and $F: M \to M_0$ by $\tilde{F}(aK_0) = \lambda^*(a)\phi$, $F(aK) = \lambda^*(a)V_{\lambda^*}^{\lambda^*}$, and moreover \tilde{F} and F are bijections. \tilde{F} is easily seen to be an equivalence of S^1 bundles, with $\pi_0 \tilde{F} = F\pi$. Q.E.D.

4.2. Main theorem. Recall from §1 the subrepresentations Γ and Γ_k ($k \in \mathbb{Z}$) of the left-regular representation of G.

We relate our discussion here to that of §3 by introducing

$$\Gamma_{p,q} = \mathfrak{B}_{p\lambda} \overline{\mathfrak{B}}_{q\lambda}, \quad p, q \in \mathbf{Z}^+.$$

Proposition (4.2.1). (a) $\Gamma_k \subseteq \Gamma$ for k in \mathbb{Z} .

(b)
$$\Gamma_{p,q} \subseteq \Gamma_{p-q}$$
 for p, q in \mathbb{Z}^+ .

PROOF. (a) is clear. For (b), choose $f \in \mathfrak{B}_{p\lambda}$, $g \in \mathfrak{B}_{a\lambda}$, and $x \in K$. Then

$$R(x)(f\overline{g}) = (R(x)f)(R(x)\overline{g}) = (R(x)f)\overline{(R(x)g)}$$
$$= \chi(x)^{p}\overline{\chi(x)^{q}}f\overline{g} = \chi(x)^{p-q}(f\overline{g}).$$

Thus $f\overline{g} \in \Gamma_{p-q'}$ as desired. Q.E.D.

PROPOSITION (4.2.2). The algebraic sum $\sum_{p,q\in\mathbb{Z}^+}\Gamma_{p,q}$ is dense in Γ .

PROOF. The continuous functions Γ' in Γ are dense in Γ . Γ' may be regarded as C(P), the continuous functions on P (see (4.1.2)). It will suffice to show $\tilde{\Gamma} = \sum_{p,q} \Gamma_{p,q}$ is dense in Γ' with respect to the sup-norm. As P is compact, this density will follow from the Stone-Weierstrass Theorem, provided we show that $\tilde{\Gamma}$ has the following properties:

- (i) If $f, g \in \Gamma$, and $z \in \mathbb{C}$ then f + zg, fg, and $\bar{f} \in \Gamma$.
- (ii) For all $u \in P$, there is f in Γ with $f(u) \neq 0$.
- (iii) For all u_1, u_2 in P with $u_1 \neq u_2$, there is f in $\tilde{\Gamma}$ with $f(u_1) \neq f(u_2)$.

We show $\tilde{\Gamma}$ has these three properties.

PROOF OF (i). $\Gamma_{p,q}$ is a complex subspace and $\overline{\Gamma}_{p,q} = \Gamma_{q,p}$, so f + zg and \overline{f} are in Γ . From (3.6),

$$\Gamma_{p,q}\Gamma_{p',q'}=\,\mathfrak{B}_{p\lambda}\,\overline{\mathfrak{B}}_{q\lambda}\,\mathfrak{B}_{p'\lambda}\,\overline{\mathfrak{B}}_{q'\lambda}\,=\,\mathfrak{B}_{(p+p')\lambda}\overline{\mathfrak{B}}_{(q+q')\lambda}=\,\Gamma_{p+p',q+q'}.$$

Thus fg is in Γ .

PROOF OF (ii). We will in fact find the desired functions for (ii) and (iii) in $\Gamma_{1,0}=\mathfrak{B}_{\lambda}$. As $\mathfrak{B}_{\lambda}\neq 0$, choose f_0 in \mathfrak{B}_{λ} , a_0 in G with $f_0(a_0)\neq 0$. Then for a in G, $0\neq f_0(a_0)=f_0(a_0a^{-1}a)=(L_{aa_0-1}f_0)(a)$. But $L_{aa_0-1}f_0$ is in \mathfrak{B}_{λ} . This proves (ii).

PROOF OF (iii). As in (ii), the homogeneity of P and the result $L(G)\mathfrak{B}_{\lambda} \subset \mathfrak{B}_{\lambda}$ reduces the question to demonstrating the validity of the following statement:

$$\forall a \not\in K_0 \quad \exists f \in \mathfrak{B}_{\lambda} \quad f(a) \neq f(e).$$

Now the statement in question is false if and only if

$$\exists a \not\in K_0 \quad \forall f \in \mathfrak{B}_{\lambda} \quad f(a) = f(e).$$

Thus, we need to show that

$$K_0 \supset \{a \in G | \forall f \in \mathfrak{B}_{\lambda}, f(a) = f(e) \}.$$

Let S be the set we want K_0 to contain. Then, using again $L(G)\mathfrak{B}_{\lambda} \subset \mathfrak{B}_{\lambda}$, one shows

$$S = \{ a \in G | \forall f \in \mathfrak{B}_{\lambda}, R(a)f = f \}.$$

Letting $\mathfrak{B}'_{\lambda} = \mathfrak{F}(\mathfrak{B}_{\lambda}) \subset V^{\lambda} \otimes V^{\lambda^*}$, we recall that $\mathfrak{B}'_{\lambda} = V^{\lambda} \otimes \{\phi\}$ ($\phi = \phi^{\lambda}_{d_{\lambda}}$) so $S = \{a \in G | \lambda^*(a) \cdot \phi = \phi\}$. Thus $S = K_0$ by Step 2 of the proof of (4.1.2). Q.E.D.

Proposition (4.2.3). $\Gamma = \bigoplus_{k \in \mathbb{Z}} \Gamma_k$, a Hilbert space direct sum.

PROOF. Choose distinct integers k and l; since $\lambda^* \neq 0$, we may choose x in K with $\chi(x)^{k-l} \neq 1$. Then for f in Γ_k and g in Γ_1 , $\{f, g\} = \chi(x)^{k-1} \{f, g\} = 0$; thus $\Gamma_k \perp \Gamma_l$. By the previous two propositions $\sum_{k \in \mathbb{Z}} \Gamma_k$ is dense in Γ ; (4.2.3) follows. Q.E.D.

Proposition (4.2.4). $\Gamma_{p,q} \subset \Gamma_{p+1,q+1}$, for p, q in \mathbb{Z}^+ .

Proof.

$$\Gamma_{p+1,q+1} = \mathfrak{B}_{(p+1)\lambda} \overline{\mathfrak{B}}_{(q+1)\lambda} = \mathfrak{B}_{p\lambda} \overline{\mathfrak{B}}_{q\lambda} \mathfrak{B}_{\lambda} \overline{\mathfrak{B}}_{\lambda}.$$

Thus it suffices to show $1 \in \mathfrak{B}_{\lambda} \overline{\mathfrak{B}}_{\lambda}$. But from 2.4, $1 = \sum_{i} f_{i}^{\lambda} \overline{f}_{i}^{\lambda} \in \mathfrak{B}_{\lambda} \overline{\mathfrak{B}}_{\lambda}$. Q.E.D.

The same proof shows that $\mathfrak{B}_{\nu_1}\overline{\mathfrak{B}}_{\nu_2}\subseteq\mathfrak{B}_{\nu_1+\nu_3}\overline{\mathfrak{B}}_{\nu_1+\nu_3}$, for any ν_1, ν_2, ν_3 in Λ^+ .

PROPOSITION (4.2.5). Let v_1 , v_2 be in Λ^+ . Then

$$\left\{ \operatorname{ch}(\nu_1 + n\nu_2 \otimes n\nu_2^*) \right\}_{n=0}^{\infty}, \quad \left\{ \operatorname{ch}(n\nu_2 \otimes \nu_1 + n\nu_2^*) \right\}_{n=0}^{\infty}$$

are increasing sequences in δ , bounded above by d. Thus, their limits exist in δ .

Proof. By (3.1.1), (3.2.4) and (4.2.4),

$$\operatorname{ch}((\nu_1 + n\nu_2) \otimes n\nu_2^*) = \operatorname{ch}(\mathfrak{B}_{\nu_1 + n\nu_2} \otimes \mathfrak{B}_{n\nu_2^*}) = \operatorname{ch}(\mathfrak{B}_{\nu_1} \mathfrak{B}_{n\nu_2} \overline{\mathfrak{B}}_{n\nu_2})$$

$$\leq \operatorname{ch}(\mathfrak{B}_{\nu_1} \mathfrak{B}_{n\nu_2} \overline{\mathfrak{B}}_{n\nu_2} \mathfrak{B}_{\nu_2} \overline{\mathfrak{B}}_{\nu_2}) = \operatorname{ch}(\nu_1 + (n+1)\nu_2 \otimes (n+1)\nu_2^*),$$

so the first sequence is increasing. Since $\operatorname{ch}(\mathfrak{B}_{\mu_1}\overline{\mathfrak{B}}_{\mu_2}) \leq d$ for μ_1 , μ_2 in Λ^+ , the above expression assures the first sequence bounded above by d. This proves the proposition for the first sequence; the proof for the second sequence is entirely analogous. Q.E.D.

Тнеогем (4.2.6).

$$\operatorname{ch}(\Gamma_k) = \lim_{n \to \infty} \operatorname{ch}(k\lambda + n\lambda \otimes n\lambda^*), \quad \operatorname{ch}(\Gamma_{-k}) = \lim_{n \to \infty} \operatorname{ch}(n\lambda \otimes k\lambda^* + n\lambda^*)$$
 for k in \mathbb{Z}^+ . The sequences in \mathbb{S} involved are increasing and bounded above.

PROOF. By (4.2.5) we know the limits involved exist. The argument being similar in both cases, consider Γ_k ; call the limit in question f. From 3.2.4, $\operatorname{ch}(\Gamma_{k+n,n}) = \operatorname{ch}(k\lambda + n\lambda \otimes n\lambda^*)$; now application of (4.2.1)–(4.2.4) shows that $f = \operatorname{ch}(\Gamma_k)$. Q.E.D.

4.3. Some formulas holding for Γ_k in general. Let $\lambda \neq 0$ in Λ^+ be chosen. For f in S, define f^* in S by $f^*(\mu) = f(\mu^*)$, for μ in Λ^+ .

PROPOSITION (4.3.1). For k in \mathbb{Z}^+ ,

- (a) $\operatorname{ch}(\Gamma_k(\lambda)) > \sum_{n=0}^{\infty} \operatorname{ch}(k\lambda + n\lambda + n\lambda^*),$
- (b) $\operatorname{ch}(\Gamma_{-k}(\lambda)) = \operatorname{ch}(\Gamma_{k}(\lambda))^* = \operatorname{ch}(\Gamma_{k}(\lambda^*)),$
- (c) $ch(\Gamma_k(\lambda)) = ch(\Gamma_1(k\lambda))$, if $k \neq 0$.

PROOF. (a) $\operatorname{ch}(\Gamma_k) = \lim_{n \to \infty} \operatorname{ch}(k\lambda + n\lambda \otimes n\lambda^*) \ge \operatorname{ch}(k\lambda + N\lambda \otimes N\lambda^*)$, for fixed $N \in \mathbb{Z}^+$. But $\operatorname{ch}(k\lambda + N\lambda \otimes N\lambda^*) \ge \operatorname{ch}(k\lambda + N\lambda + N\lambda^*)$, by the usual realization of the Cartan product [11, p. 111]. (a) follows.

(b)
$$\cosh(\Gamma_k(\lambda))^* = \left(\lim_{n \to \infty} \operatorname{ch}(k\lambda + n\lambda \otimes n\lambda^*)\right)^*$$

$$= \lim_{n \to \infty} \operatorname{ch}(n\lambda \otimes k\lambda^* + n\lambda^*) = \operatorname{ch}(\Gamma_{-k}(\lambda)).$$
Similarly
$$\operatorname{ch}(\Gamma_k(\lambda^*)) = \lim_{n \to \infty} \operatorname{ch}(k\lambda^* + n\lambda^* \otimes n\lambda) = \operatorname{ch}(\Gamma_{-k}(\lambda)).$$

$$\Gamma_{k}(\lambda) = \left\{ f \in L^{2}(G) \middle| R(\exp X) f = \left(e^{\lambda^{*}(X)} \right)^{k} f, X \in \mathcal{G}_{\lambda} \right\}$$

$$= \left\{ f \in L^{2}(G) \middle| R(\exp X) f = e^{k\lambda^{*}(X)} f, X \in \mathcal{G}_{\lambda} \right\}$$

$$= \Gamma_{1}(k\lambda), \quad \text{as } \mathcal{G}_{\lambda} = \mathcal{G}_{k\lambda} \text{ since } \lambda \neq 0. \quad \text{Q.E.D.}$$

One might be better able to think about the infinite series in part (a) of the proposition if it were summed in a closed form. This idea may be formalized as follows. In order to avoid an additional symbol, let $\mathbb S$ now represent the set of all **Z**-valued functions defined on Λ^+ (earlier, we restricted to $\mathbf Z^+$ -valued functions). The set $\{\operatorname{ch}(\lambda)|\lambda\in\Lambda^+\}$ is a **Z**-independent subset and we may write $f=\Sigma_{\lambda\in\Lambda^+}f(\lambda)\operatorname{ch}(\lambda)$ for f in $\mathbb S$. Define $\operatorname{ch}(\lambda)\operatorname{ch}(\lambda')=\operatorname{ch}(\lambda+\lambda')$, and extend this definition to elements f,g in $\mathbb S$ by

$$fg = \sum_{\lambda,\lambda'} f(\lambda) g(\lambda') \operatorname{ch}(\lambda + \lambda'),$$

whenever the summation converges absolutely to an element of S. In particular fg is defined if either f or g is 0 of f some finite set. Notice that ch(0)f = f for f in S. By introducing the formal identity $1/(1-x) = \sum_{n=0}^{\infty} x^n$, for elements x in S whose powers are defined, we obtain the expression

$$\sum_{n=0}^{\infty} \operatorname{ch}(k\lambda + n\lambda + n\lambda^*) = \frac{\operatorname{ch}(k\lambda)}{\operatorname{ch}(0) - \operatorname{ch}(\lambda + \lambda^*)}.$$

We will use such formalism without comment in the sequel.

4.4. The usual representation of SU(n+1), n > 1. Investigation of the present example was suggested to the author J. W. Robbin and led to the main theorem when correctly viewed. Namely, we consider G = SU(n+1), n > 1, in its natural representation on \mathbb{C}^{n+1} . If $\{e_i\}_{i=1,\ldots,n+1}$ is the usual basis of \mathbb{C}^{n+1} , then $ae_i = \sum_j a_{ji}e_j$, for $a \in G$. The highest weight of this representation is Λ_1 with weight vector e_1 . In view of (4.1.1) we should take $\lambda^* = \Lambda_1$, $\lambda = \Lambda_n$, $e_1 = \phi = \phi_{d_\lambda}^{\lambda}$. The basis $\{f_k^{\lambda}\}_{i=1,\ldots,n+1}$ of \mathfrak{B}_{λ} (see proof of (3.2.2)) may be regarded as the restrictions $\{z_i\}_{i=1,\ldots,n+1}$ to $Ge_1 = S^{2n+1} = P_0$ of the complex coordinate functions on \mathbb{C}^{n+1} . Employing the usual multinomial notation $\mathbb{Z}^I \overline{\mathbb{Z}}^J = \mathbb{Z}_1^{I_1} \ldots \overline{\mathbb{Z}}_{n+1}^{I_{n+1}}$, we see that $\Gamma_{p,q} = \mathfrak{B}_{p\lambda} \overline{\mathfrak{B}}_{q\lambda} = \mathfrak{B}_{p\lambda} \overline{\mathfrak{B}}_{q\lambda}$ is spanned by $\{\mathbb{Z}^I \overline{\mathbb{Z}}^J \mid |I| = I_1 + \cdots + I_{n+1} = p, |J| = J_1 + \cdots + J_{n+1} = q\}$. The inclusions $\Gamma_{p,q} \subset \Gamma_{p+1,q+1}$ of (4.2.4) result from the fact that $\Sigma_{i=1}^{n+1} z_i \overline{z}_i = 1$ on P_0 . M_0 is $\mathbb{C}P^n$ and π_0 : $P_0 \to M_0$ is the (usual) Hopf map.

We see that \mathfrak{B}_{λ} may be regarded as the restriction to P_0 of the linear functions on \mathbb{C}^{n+1} . Thus, \mathfrak{B}_{λ} may be regarded as sections of the line bundle dual to the Hopf bundle; this dual Hopf bundle is associated with the principal S^1 bundle $\pi_0^* \colon P_0^* \to M_0$, where $P_0^* = P_0, \pi_0^* = \pi_0$, but $\psi \cdot \zeta = \zeta^{-1} \cdot \psi$ for $\psi \in P_0^*, \zeta \in S^1$.

Proposition (4.4.1).

(a)
$$\operatorname{ch}(\Gamma_k) = \frac{\operatorname{ch}(\lambda)^k}{\operatorname{ch}(0) - \operatorname{ch}(\lambda + \lambda^*)}, \quad k \in \mathbf{Z}^+.$$

(b)
$$\operatorname{ch}(\Gamma) = \frac{\operatorname{ch}(0)}{\left(\operatorname{ch}(0) - \operatorname{ch}(\lambda)\right)\left(\operatorname{ch}(0) - \operatorname{ch}(\lambda^*)\right)}.$$

PROOF. (a) The point here is that

$$\operatorname{ch}((p+1)\lambda + (q+1)\lambda^*) = \operatorname{ch}(\Gamma_{p+1,q+1}) - \operatorname{ch}(\Gamma_{p,q});$$

this formula is proved using the Weyl dimension formula. The result then follows from (4.3).

(b) $\operatorname{ch}(\Gamma) = \sum_{k=-\infty}^{\infty} \operatorname{ch}(\Gamma_k)$. Setting $x = \operatorname{ch}(\lambda)$, $y = \operatorname{ch}(\lambda^*)$ and using (a) and (4.3), one has (setting $\operatorname{ch}(0) = 1$)

$$\operatorname{ch}(\Gamma) = \left[(1-x)^{-1} + (1-y)^{-1} - 1 \right] (1-xy)^{-1}$$
$$= (1-x)^{-1} (1-y)^{-1}. \quad \text{Q.E.D.}$$

4.5. Use of Steinberg's formula. The expression for $ch(\Gamma_k)$ may be said to completely solve the question of Γ_k 's G-module structure, as it expresses

 $\operatorname{ch}(\Gamma_k)$ in terms of certain $\operatorname{ch}(\nu_1 \otimes \nu_2)$, ν_1 , ν_2 in \hat{G} . There is a certain closed expression for a general 'outer' multiplicity $\operatorname{ch}(\nu_1 \otimes \nu_2)(\nu_3)$, ν_1 , ν_2 , $\nu_3 \in \Lambda^+$, namely Steinberg's formula [8, p. 141].

Steinberg's formula has certain drawbacks as a computational device, requiring as it does a double summation over the Weyl group and a knowledge of Kostant's partition function. The interested reader may refer to the references in [3, p. 120] for examples.

One question arising in the computation of

$$\operatorname{ch}(\Gamma_1(\lambda))(\nu) = \lim_{n \to \infty} \operatorname{ch}(\lambda + n\lambda \otimes n\lambda^*)(\nu)$$

is the determination of the lowest value $n(\lambda, \nu)$ of n at which

$$\operatorname{ch}(k\lambda + n\lambda \otimes n\lambda^*)(\nu) = \operatorname{ch}(\Gamma_1(\lambda))(\nu).$$

At present the author has no general information regarding this function $n(\lambda, \nu)$.

4.6. Frobenius reciprocity; SU(2). Our representation Γ_k is an induced representation. Namely, it is the unitary representation of G induced from the unitary representation χ^{-k} of the closed subgroup $K = G_{\lambda^*}$, χ being the character for λ^* on K. As with all unitarily induced representations of G, we may analyze Γ_k by means of the Frobenius reciprocity relation. When used in coordination with such formulas as those of Kostant and Freudenthal [8, pp. 122, 138], the following Frobenius reciprocity statement is very useful computationally for regular λ .

PROPOSITION (4.6.1). $\operatorname{ch}(\Gamma_k(\lambda))(\nu) = \dim\{v \in V^{\nu} | \nu(x)v = \chi^{-k}(x)v \text{ if } x \in K\}$. In particular, $\operatorname{ch}(\Gamma_k(\lambda))(\nu) \leq \dim V^{\nu}_{k\lambda}$, with equality occurring if λ is regular.

PROOF. $\operatorname{ch}(\Gamma_k)(\nu) = \dim \operatorname{Hom}_G(V^{\nu}, \Gamma_k)$, so by 5.3.6 of [16], $\operatorname{ch}(\Gamma_k)(\nu) = \dim \operatorname{Hom}_K(V^{\nu}, \chi^{-k})$, where $\operatorname{Hom}_K(V^{\nu}, \chi^{-k}) = \{\psi \in V^{\nu^*} | \psi(\nu(x)\nu) = \chi^{-k}(x)\psi(\nu) \text{ if } x \in K \text{ and } v \in V\} = \{\psi \in V^{\nu^*} | \nu^*(x)(\psi) = \chi^k(x)\psi \text{ if } x \in K\}$. Along with (4.3) one concludes $\operatorname{ch}(\Gamma_k)(\nu) = \operatorname{ch}(\Gamma_k)^*(\nu^*) = \operatorname{ch}(\Gamma_{-k})(\nu^*) = \dim\{v \in V^{\nu} | \nu(x)(v) = \chi^{-k}(x)\nu \text{ if } x \in K\}$. This shows the first formula of the proposition. Now since $\chi^{-k}(\exp H) = e^{-k\lambda^*(H)}$ for H in \mathfrak{T} , the set whose dimension equals $\operatorname{ch}(\Gamma_k(\lambda))(\nu)$ is contained in $V^{\nu}_{-\lambda^*}$, with the containment being equality when λ is regular. Applying (2.3), one gets $\operatorname{ch}(\Gamma_k(\lambda))(\nu) \leqslant \dim V^{\nu}_{-k\lambda^*} = \dim V^{\nu}_{w_0(k\lambda)} = \dim V^{\nu}_{k\lambda}$, with equality if λ is regular. Q.E.D.

The proposition yields $\operatorname{ch}(\Lambda_k)$ at once for G = SU(2). Namely, suppose $\lambda = m\Lambda_1$, $m \in \mathbb{Z}^+$, $m \neq 0$. Suppose $\nu = n\Lambda_1$, $n \in \mathbb{Z}^+$. Then $\dim V_{k\lambda}^{\nu} = \dim V_{km\Lambda_1}^{n\Lambda_1} = 1$ if $-n \leq km \leq n$ and $km \equiv n \pmod 2$, 0 otherwise. Thus, if $x = \operatorname{ch}(\Lambda_1)$,

$$\operatorname{ch}(\Lambda_k) = \sum_{n=0}^{\infty} \operatorname{ch}((km+2n)\Lambda_1) = \frac{x^{km}}{\operatorname{ch}(0) - x^2}.$$

When m = 1, we recover a formula of (4.3) as here $\lambda = \lambda^*$.

4.7. SU(3). We introduce notation which is convenient for the algebraic expressions for $\operatorname{ch}(\Lambda_1(\lambda))$, $\operatorname{ch}(\Gamma_0(\lambda))$, $\lambda \neq 0 \in \Lambda^+$. Recalling the usual weightroot notations for SU(3) (see [8]), set $\alpha = 2\Lambda_1 - \Lambda_2$, $\beta = -\Lambda_1 + 2\Lambda_2$, $\delta = \alpha + \beta = \Lambda_1 + \Lambda_2$; where Λ_1 , Λ_2 are usual fundamental weights; $\Phi^+ = \{\alpha, \beta, \delta\}$. In S set $x_i = \operatorname{ch}(\Lambda_i)$, $i = 1, 2, A = x_1^2 X_2^{-1}$, $B = x_1^{-1} x_2^2$; $\operatorname{ch}(0) = 1$ in S.

Proposition (4.7.1). Let $\lambda = m_1 \Lambda_1 + m_2 \Lambda_2 \neq 0 \in \Lambda^+$. Then:

(a) If $m_1 m_2 = 0$, then

$$\operatorname{ch}(\Gamma_{1}(\lambda)) = \frac{x_{1}^{m_{1}} x_{2}^{m_{2}}}{(1 - x_{1} x_{2})}, \quad \operatorname{ch}(\Gamma_{0}(\lambda)) = \frac{1}{(1 - x_{1} x_{2})}.$$

(b) If $m_1m_2 \neq 0$, then

$$\operatorname{ch}(\Gamma_{1}(\lambda)) = \frac{x_{1}^{m_{1}}x_{2}^{m_{2}}}{(1 - x_{1}x_{2})^{2}} \left\{ 1 + \frac{A}{1 - A} \left(1 - A^{m_{2}} \right) + \frac{B}{1 - B} \left(1 - B^{m_{1}} \right) + \frac{x_{1}^{3}}{1 - x_{1}^{3}} A^{m_{2}} + \frac{x_{2}^{3}}{1 - x_{2}^{3}} B^{m_{1}} \right\}$$

and

$$\operatorname{ch}(\Gamma_0(\lambda)) = \frac{1}{(1-x_1x_2)^2} \left\{ -1 + \frac{x_1^3}{1-x_1^3} + \frac{x_2^3}{1-x_2^3} \right\}.$$

PROOF. (a) When $\lambda = \Lambda_2$, we have found $\operatorname{ch}(\Gamma_k(\lambda))$, for k in \mathbb{Z} , in (4.4). The cases in (a) follow by applying (4.3).

(b) In this case λ is regular. To prove the formula for $ch(\Gamma_1(\lambda))$ one need only show, by Frobenius reciprocity, that dim V_{ν}^{ν} is given by the right-hand side of the desired equation. This may be accomplished by using the Kostant multiplicity formula (see [12, p. 131]; for the partition function for SU(3) see [16, Table I]). For details, see [7]; the main theorem serves as a heuristic device to suggest the result and its method of proof (since an algorithm for tensor products of irreducibles is known (see [16])). Q.E.D.

BIBLIOGRAPHY

- 1. J. F. Adams, Lectures on Lie groups, Benjamin, New York, 1969. MR 40 #5780.
- 2. L. Auslander and B. Kostant, *Polarization and unitary representations of solvable Lie groups*, Invent. Math. 14 (1971), 255-354. MR 45 #2092.
- 3. J. G. T. Belinfante and B. Kolman, A survey of Lie groups and Lie algebras with applications and computational methods, SIAM, Philadelphia, 1973.
- 4. A. Borel and F. Hirzbruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538. MR 21 #1586.
- 5. C. Chevalley, *Theory of Lie groups*. I, Princeton Univ. Press, Princeton, N.J., 1946. MR 7, 412.
- 6. L. Fonda and G. C. Ghirardi, Symmetry principles in quantum physics, Dekker, New York, 1970.

- 7. J. Funderburk, Module structure of certain induced representations of compact Lie groups, Ph.D. Thesis, Univ. of Wisconsin, Madison, May, 1975.
- 8. J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972. MR 48 #2197.
- 9. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience, New York, 1969. MR 38 #6501.
- 10. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387. MR 26 #265.
- 11. ______, Quantization and unitary representations, I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, 1970, pp. 87-208. MR 45 #3638.
- 12. H. Samelson, *Notes on Lie algebras*, Mathematical Studies, no. 23, Van Nostrand Reinhold, New York, 1969. MR 40 #7322.
- 13. J.-P. Serre, Represésentations linéaires et espaces homogènes kälériens des groupes de Lie compacts, Séminaire Bourbaki: 1953/54, Exposé 100, 2nd corr. ed., Secrétariat mathématique, Paris, 1959. MR 28 #1087.
- 14. J.-M. Souriau, Structure des systèmes dynamiques, Maitrises de Mathématiques, Dunod, Paris, 1970. MR 41 #4866.
- 15. S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964. MR 33 #1797.
- 16. J. Tarski, Partition function for certain simple Lie algebras, J. Mathematical Phys. 4 (1963), 569-574. MR 26 #5099.
 - 17. Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973.

Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115